Air tightness in passive houses: closed-cell sprayed polyurethane foam

One of the main technical criteria of a passive house involves ensuring the air tightness of the enclosures that form the envelope.

Imperfections in the building envelope, in the form of holes or cracks, can cause a large number of problems, particularly during the coldest periods of the year. The flows of air from the interior to the exterior through these holes or cracks have a high risk of causing condensations in the construction.

Infiltrations of cold air also produce a feeling of loss of comfort for users. These infiltrations of cold air also increase the difference in temperature between the different floors of the building.

Air tightness in passive houses: closed-cell sprayed polyurethane foam


Air tightness in passive houses

Due to the fact that, in most climates, a passive house requires mechanical support for the continuous supply of outdoor air, an excellent sealing of the building envelope is required. If the envelope is not sufficiently tight, the air flow will not follow the planned routes and the heat recovery will not work correctly, resulting in a higher energy consumption.

In very mild climates, it is possible to build a passive house without heat recovery systems. In this case, if there is no ventilation system, the sealing is no longer that important. On the other hand, those buildings which are highly airtight, but which do not have any ventilation systems are very likely to have poor air quality and excessive humidity. Good sealing is achieved by an appropriate design. It is important that a single airtight layer covers the entire building.

The sealing can be checked by means of a pressurization test, known as "Blower Door test", which consists of forced pressurization and depression by the action of a fan placed in an exterior door or window, which creates a difference of pressure of 50 Pa.

The result obtained in the pressurization test for the outer envelope of the building, according to EN 13829, must be lower than 0.6 air changes per hour (sealing value 50 Pa) in severe winter climates (central Europe), and less than 1.0 / h in regions with a milder climate, where the night time temperatures are above 0ºC, as for example some areas in Spain.


Polyurethane applications for building - Infographic


The closed cell sprayed polyurethane foam insulation (CCC4) and its contribution to the airtight barrier

When spraying closed-cell polyurethane (CCC4) on any surface of the building envelope, it acts as an airtight barrier, as it has an internal structure where closed cells represent up to 90%. This characteristic means that sprayed polyurethane foam, in addition to providing thermal insulation, can be a sealant for cracks and fissures, which ends with unwanted air renewals, avoids thermal bridges thanks to its continuous application and protects the envelope of the building.

To sum up, we can say that the closed cell sprayed polyurethane foam (CCC4) is the most suitable type of polyurethane product for passive houses.


Air tightness in passive houses: closed-cell sprayed polyurethane foam


Why are closed cells so important in the structure of any insulation system and, in particular, in the structure of sprayed polyurethane foam?

An open cell insulation allows the air to fill the cells, so that the foam is less insulating and moisture permeable and it may require a vapour barrier in cold climates. In contrast, the sprayed polyurethane foam with closed cell structure (CCC4) creates a rigid foam that resists water and does not need additional vapour barrier.

Beyond the principle of action of the passive houses on the infiltrations in the envelopes in terms of interior comfort, the sprayed polyurethane foam acts in favour of their occupants’ health, since these sealings prevent the entry of dust, pollen and other allergens. In addition, they do not contain formaldehyde or volatile organic chemicals.


You can get in touch to receive further information on Synthesia Technology polyurethane systems or download our document about polyurethane applications in the building industry. 

Polyurethane applications for building - Infographic



Biological protection equipment: advantages of polyurethane

Polyurethane is widely used to make biological protection equipment. It offers a resistant, safe and durable barrier to pollutants.

Read more


Find what you want

    Nueva llamada a la acción
    Nueva llamada a la acción
    Nuevo llamado a la acción